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Abstract. Using our calculus forSU(3) a generating function for WignerD-matrix elements is
derived for the first time. From this an explicit expression for the individual matrix elements, in
an arbitrary irreducible representation, is obtained, also for the first time, in terms of polynomials
in the matrix elements of the defining representation ofSU(3). This expression does not depend
on any particular parametrization of the group.

1. Introduction

The Wigner D-matrix elements ofSU(3) have very important applications in nuclear
physics, particle physics,SU(3) lattice gauge theories, matrix models, finite temperature
field theory calculations involvingSU(3) and other areas of physics. Starting with
Murnaghan [2], who parametrized the defining matrices ofU(n) andO(n), many authors
[4–7] have obtained expressions for the WignerD-matrix elements ofSU(3) using various
methods. It is the purpose of this paper to evaluate these matrix elements forSU(3) using
the calculus [1, 11] we have set up to deal with computations involving the groupSU(3).
The distinct advantage of this calculus and the novelty of our present method is that it
allows one to write a generating function for these matrix elements from which one can
extract the individual matrix elements by using the auxiliary inner product of the calculus.

The layout of the paper is as follows. We begin, in section 2, by reviewing the main
ingredients of our calculus forSU(3) which are relevant to our present discussion and then,
in section 3, give a derivation of the generating function for the matrix elements. In section 4
we show how to extract the individual matrix elements and obtain a polynomial expression
for the matrix elements in any irreducible representation in terms of the matrix elements
of the defining representation ofSU(3) in any parametrization. Section 5 is devoted to a
discussion of our results. A few examples are included in the appendix for illustrating the
method.

2. Overview of our previous results

In this section we briefly review the results that we need for the groupSU(3). Some of
these results were obtained by us in a previous paper [1].
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SU(3) is the group of 3× 3 unitary unimodular matricesA with complex coefficients.
It is a group of eight real parameters. The matrix elements satisfy the following conditions:

A = (aij )

A†A = I AA† = I whereI is the identity matrix and

det(A) = 1 .

(1)

2.1. Parametrization

One well known parametrization ofSU(3) is due to Murnaghan [2], see also [3–5, 8]. In
this we write a typical element ofSU(3) as

D(δ1, δ2, φ3)U23(φ2, σ3)U12(θ1, σ2)U13(φ1, σ1) (2)

with the conditionφ3 = −(δ1 + δ2). Here D is a diagonal matrix whose elements are
exp(iδ1), exp(iδ2), exp(iφ3) andUpq(φ, σ ) is a 3×3 unitary unimodular matrix which, for
instance, in the casep = 1, q = 2 has the form( cosφ − sinφ exp(−iσ) 0

sinφ exp(iσ) cosφ 0
0 0 1

)
. (3)

The three parametersφ1, φ2, φ3 are longitudinal angles whose range is−π 6 φi 6 π , and
the remaining six parameters are latitude angles whose range is1

2π 6 σi 6 1
2π .

Now the transformationsU23 andU13 can be changed into transformations of the type
U12 whose matrix elements are known, by the following device:

U13(φ1, σ1) = (2, 3)U12(φ1, σ1)(2, 3)

U23(φ2, σ3) = (1, 2)(2, 3)U12(φ2, σ3)(2, 3)(1, 2)
(4)

where(1, 2) and(2, 3) are the transposition matrices

(1, 2) =
( 0 1 0

1 0 0
0 0 1

)
(2, 3) =

( 0 1 0
1 0 0
0 0 1

)
. (5)

In this way the expression for an element of theSU(3) group becomes

D(δ1, δ2, φ3)(1, 2)(2, 3)U12(φ2, σ3)(2, 3)(1, 2)U12(θ1, σ2)(2, 3)U12(φ1, σ1)(2, 3) . (6)

2.2. Irreducible representations

The above parametrization provides us with a defining irreducible representation 3of SU(3)

acting on a three-dimensional complex vector space spanned by the tripletz1, z2, z3 of
complex variables. The Hermitian adjoint of the above matrix gives us another defining
but inequivalent irreducible representation 3∗ of SU(3) acting on the tripletw1, w2, w3

of complex variables spanning another three-dimensional complex vector space. Tensors
constructed out of these two three-dimensional representations span an infinite-dimensional
complex vector space.

2.3. The constraint

If we impose the constraint

z1w1 + z2w2 + z3w3 = 0 (7)
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on this space we obtain an infinite-dimensional complex vector space in which each
irreducible representation ofSU(3) occurs once and only once. Such a space is called a
model space forSU(3). Furthermore, if we solve the constraintz1w1+z2w2+z3w3 = 0 and
eliminate one of the variables, sayw3, in terms of the other five variablesz1, z2, z3, w1, w2

we can write a generating function to generate all the basis states of all the IRs ofSU(3).
This generating function is computationally a very convenient realization of the basis of the
model space ofSU(3). Moreover, we can define a scalar product on this space by choosing
one of the variables, sayz3, to be a planar rotor exp(iθ). Thus the model space forSU(3) is
now a Hilbert space with this (auxiliary) scalar product between the basis states. The above
construction was carried out in detail in a previous paper by us [1]. For easy accessibility
we give a self-contained summary of those results here.

2.4. Labels for the basis states

(i) Gelfand–Zetlein labels. Normalized basis vectors are denoted by|M, N; P, Q, R, S,

U, V 〉. All labels are non-negative integers. All irreducible representations (IRs) are
uniquely labelled by(M, N). For a given IR(M, N), labels(P, Q, R, S, U, V ) take all
non-negative integral values subject to the constraints

R + U = M S + V = N P + Q = R + S . (8)

The allowed values can be prescribed easily:R takes all values from 0 toM, andS

from 0 to N . For a givenR andS, Q takes on all values from 0 toR + S.

(ii) Quark model labels. The relation between the above Gelfand–Zetlein labels and the
quark model labels is as given below,

2I = P + Q = R + S 2I3 = P − Q

Y = 1
3(M − N) + V − U = 2

3(N − M) − (S − R)
(9)

whereR takes all values from 0 toM. S takes all values from 0 toN . For a givenR and
S, Q takes all values from 0 toR + S.

2.5. Explicit realization of the basis states

(i) Generating function for the basis states of SU(3).The generating function for the basis
states of the IR’s ofSU(3) can be written as

g(p, q, r, s, u, v) = exp(r(pz1 + qz2) + s(pw2 − qw1) + uz3 + vw3) . (10)

The coefficient of the monomialpP qQrRsSuUvV in the Taylor expansion of (10), after
eliminatingw3 using (7), in terms of these monomials gives the basis state ofSU(3) labelled
by the quantum numbersP, Q, R, S, U, V .

(ii) Formal generating function for the basis states of SU(3).The generating function (10)
can be written formally as

g =
∑

P,Q,R,S,U,V

pP qQrRsSuUvV |PQRSUV ) (11)

where |PQRST UV ) is an unnormalized basis state ofSU(3) labelled by the quantum
numbersP, Q, R, S, U, V .

Note that the constraintP + Q = R + S is automatically satisfied in the formal as well
as explicit Taylor expansion of the generating function.
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(iii) Generalized generating function for the basis states of SU(3).It is useful, while
computing the normalizations (see below) of the basis states, to write the above generating
function in the following form:

G(p, q, r, s, u, v) = exp(rpz1 + rqz2 + spw2 + sqw1 + uz3 + vw3) . (12)

In the above generalized generating function (12) the following notation holds.

rp = rp rq = rq sp = sp sq = −sq . (13)

2.6. Notation

Hereafter, for simplicity in notation we assume all variables, other than thezi
j and wi

j

wherei, j = 1, 2, 3, to be real even though we have treated them as complex variables at
some places. Our results are valid even without this restriction as we are interested only
in the coefficients of the monomials in these real variables rather than in the monomials
themselves.

2.7. Auxiliary scalar product for the basis states.

The scalar product to be defined in this section is auxiliary in the sense that it does not give
us the ‘true’ normalizations of the basis states ofSU(3). However, it is computationally
very convenient for us as all computations with this scalar product get reduced to simple
Gaussian integrations and the ‘true’ normalizations themselves can then be found quite
easily [1].

(i) Scalar product between generating functions of basis states of SU(3).We define the
scalar product between any two basis states in terms of the scalar product between the
corresponding generating functions as follows:

(g′, g) =
∫ +π

−π

dθ

2π

∫
d2z1

π2

d2z2

π2

d2w1

π2

d2w2

π2
exp(−z̄1z1 − z̄2z2 − w̄1w1 − w̄2w2)

× exp

(
(r ′(p′z1 + q ′z2) + s ′(p′w2 − q ′w1) − −v′

z3
(z1w1 + z2w2) + u′z̄3

)
× exp

(
(r(pz1 + qz2) + s(pw2 − qw1) − −v

z3
(z1w1 + z2w2) + uz3

)
= (1 − v′v)−2

( ∞∑
n=0

(u′u)n

(n!)2

)
exp

[
(1 − v′v)−1(p′p + q ′q)(r ′r + s ′s)

]
. (14)

(ii) Choice of the variablez3. To obtain (14) we have made the choice

z3 = exp(iθ) . (15)

The choice, equation (15), makes our basis states forSU(3) depend on the variables
z1, z2, w1, w2 andθ .

The just described scalar product can be translated into the language of boson operators
and the same results can be obtained [11].
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(iii) Scalar product between the generalized generating functions of the basis states of SU(3).
For the generalized generating function the scalar product becomes

(G ′, G) = (1 − v′v)−2 exp
[
(1 − v′v)−1(r ′

prp + r ′
qrq + s ′

psp + s ′
qsq)

]
×

[∑
n=0

∞ 1

(n!)2

(
u′ − v

(r ′
ps ′

q + r ′
qs

′
p)

(1 − v′v)

)n (
u − v′ (rpsq + rqsp)

(1 − v′v)

)n
]

(16)

and as in (13)

rp = rp rq = rq sp = sp sq = −sq

r ′
p = r ′p′ r ′

q = r ′q ′ s ′
p = s ′p′ s ′

q = −s ′q ′ .
(17)

2.8. Normalizations

(i) Auxiliary normalizations of unnormalized basis states.The scalar product between two
unnormalized basis states, computed using our auxiliary scalar product, is given by

M(PQRSUV ) ≡ (PQRSUV |PQRSUV )

= (V + P + Q + 1)!

P !Q!R!S!U !V !(P + Q + 1)
. (18)

(ii) Scalar product between the unnormalized and normalized basis states.The scalar
product, computed using our auxiliary scalar product, between an unnormalized basis
state and a normalized one is given by the next equation where it is denoted by
(PQRSUV ||PQRSUV 〉:

(PQRSUV ||PQRSUV 〉 = N−1/2(PQRSUV ) × M(PQRSUV ) . (19)

(iii) ‘True’ normalizations of the basis states.We call the ratio of the auxiliary norm
of the unnormalized basis state represented by|PQRSUV ) and the scalar product of
the unnormalized basis state with a normalized Gelfand–Zeitlin state, represented by
|PQRSUV 〉, ‘true’ normalization. It is given by

N1/2(PQRSUV ) ≡ (PQRSUV |PQRSUV )

〈PQRSUV |PQRSUV 〉

=
(

(U + P + Q + 1)!(V + P + Q + 1)!

P !Q!R!S!U !V !(P + Q + 1)

)1/2

. (20)

3. Generating function for the Wigner D-matrix elements of SU (3)

Let us start with (11),

g(p, q, r, s, u, v, z1, z2, w1, w2) =
∑

P,Q,R,S,U,V

pP qQrRsSuUvV |PQRSUV ) (21)

where |PQRSUV ) is an unnormalized basis state in the IR labelled by the two positive
integers(M = R + U, N = S + V ).

We know from (20),

|PQRSUV ) = N(1/2)(PQRSUV )|PQRSUV 〉 (22)

where 2I = P + Q and |PQRSUV ) is a normalized basis state.
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Therefore

g =
∑

PQRSUV

(
(U + 2I + 1)!(V + 2I + 1)!

P !Q!R!S!U !V !(2I + 1)

)1/2

pP qQrRsSuUvV |PQRSUV 〉 . (23)

Now, if A ∈ SU(3), then by definition,

Ag(p, q, . . .) =
∑

PQRSUV

∑
P ′Q′R′S ′U ′V ′

(
(U + 2I + 1)!(V + 2I + 1)!

P !Q!R!S!U !V !(2I + 1)

)1/2

×D
(M=R+U, N=S+V )
PQRSUV, P ′Q′R′S ′U ′V ′(A) × pP qQrRsSuUvV × |PQRSUV 〉 (24)

where the objectD(M=R+U, N=S+V )
PQRSUV, P ′Q′R′S ′U ′V ′(A) is the WignerD-matrix element corresponding to

A ∈ SU(3) in the IR labelled by the integersM, N . Here the quantum numbersPQRSUV

andP ′Q′R′S ′U ′V ′ label the row and column, respectively, of the matrix.
To get a generating function for the matrix elements alone we have to take the inner

product of this transformed generating function with the generating function for the basis
states. Throughout the following we take the variablesp, q, r, s, u, v together with their
primed and unprimed variants to be real since we are interested only in the coefficients of
monomials in these different sets of variables in different expansions and are not interested
in these variables or their functions as such.

Thus,(
g(p′′, q ′′, r ′′, s ′′, u′′, v′′; z1, z2, z3, w1, w2), Ag(p, q, r, s, u, v; z1, z2, z3, w1, w2)

)
=

∑
PQRSUV

∑
P ′Q′R′S ′U ′V ′

∑
P ′′Q′′R′′S ′′U ′′V ′′

(
(U + 2I + 1)!(V + 2I + 1)!

P !Q!R!S!U !V !(2I + 1)

)1/2

×(P ′′Q′′R′′S ′′U ′′V ′′‖P ′Q′R′S ′U ′V ′〉 × D
(M=R+U,N=S+V )
PQRSUV,P ′Q′R′S ′U ′V ′(A)

×pP qQrRsSuUvV p′′P ′′
q ′′Q′′

r ′′R′′
s ′′S ′′

u′′U ′′
v′′V ′′

. (25)

But we know from (19),

(P ′′Q′′R′′S ′′U ′′V ′′||P ′Q′R′S ′U ′V ′〉

=
(

(U ′ + 2I ′ + 1)!(V ′ + 2I ′ + 1)!

P ′!Q′!R′!S ′!U ′!V ′!(2I ′ + 1)

)−1/2
(V ′ + P ′ + Q′ + 1)!

P ′!Q′!R′!S ′!U ′!V ′!(P ′ + Q′)
×δP ′′P ′δQ′′Q′δR′′R′δS ′′S ′δU ′′U ′δV ′′V ′ . (26)

Substituting this formula and changing the double primed variables to single primed
ones, we get(
g(p′, q ′, r,′ s ′, u′, v′; z1, z2, z3, w1, w2), Ag(p, q, r, s, u, v; z1, z2, z3, w1, w2)

)
=

∑
PQRSUV ; P ′Q′R′S ′U ′V ′

(
(U + 2I + 1)!(V + 2I + 1)!

P !Q!R!S!U !V !(2I + 1)

)

×
(

P ′!Q′!R′!S ′!U ′!V ′!(2I ′ + 1)

(U ′ + 2I ′ + 1)!(V ′ + 2I ′ + 1)!

)1/2

×
(

(V ′ + P ′ + Q′ + 1)!

P ′!Q′!R′!S ′!U ′!V ′!(P ′ + Q′ + 1)

)
× D

(M=R+U,N=S+V )
PQRSUV,P ′Q′R′S ′U ′V ′(A)

×pP qQrRsSuUvV p′P ′
q ′Q′

r ′R′
s ′S ′

u′U ′
v′V ′

. (27)

We therefore conclude that the WignerD-matrix element,

D
(M=R+U, N=S+V )
PQRSUV,P ′Q′R′S ′U ′V ′
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for SU(3) can be obtained as the coefficient of the monomial,

pP qQrRsSuUvV × p′P ′
q ′Q′

r ′R′
s ′S ′

u′U ′
v′V ′

multiplied by(
P !Q!R!S!U !V !(2I + 1)

(U + 2I + 1)!(V + 2I + 1)!
× (U ′ + 2I ′ + 1)!(V ′ + 2I ′ + 1)!

P ′!Q′!R′!S ′!U ′!V ′!(2I ′ + 1)

)1/2

×
(

P ′!Q′!R′!S ′!U ′!V ′!(P ′ + Q′ + 1)

(V ′ + P ′ + Q′ + 1)!

)
(28)

in the inner product(g′, Ag) between the untransformed and transformed generating
functions for the basis states.

Next we calculate this inner product using the explicit realization for the generating
function. For this purpose it is advantageous, as will be seen soon, to use the generalized
generating function for the basis states

G = exp(rpz1 + rqz2 + spw2 + sqw1 + uz3 + vw3)

= exp

(
( rprqu )

( z1

z2

z3

)
+ ( w1w2w3 )

( sq

sp
v

))
. (29)

When any elementA ∈ SU(3) acts on this generating function it undergoes the following
transformation:

AG = exp

(
( rp rq u )A

( z1

z2

z3

)
+ ( w1 w2 w3 )A†

( sq

sp
v

))
. (30)

As is clear from the above equation we can let the tripletsrp, rq, u andsq, sp, v undergo
the transformation instead of the tripletsz1, z2, z3 andw1, w2, w3. Therefore we can write
the transformed generating function as

AG = G(r ′′
p , r ′′

q , u′′; s ′′
q , s ′′

p, v′′) (31)

where

r ′′
p = a11rp + a21rq + a31u

r ′′
q = a12rp + a22rq + a32u

u′′ = a13rp + a23rq + a33u

s ′′
q = a∗

11sq + a∗
21sp + a∗

31v

s ′′
p = a∗

12sq + a∗
22sp + a∗

32v

v′′ = a∗
13sq + a∗

23sp + a∗
33v .

(32)

To continue with our computation we have to take the inner product of this transformed
generating function with the (untransformed) generating function of the basis states.

This is known to us from (16) as

(G ′, G ′′) = (1 − v′v′′)−2 exp
[
(1 − v′v′′)−1(r ′

pr ′′
p + r ′

qr
′′
q + s ′

ps ′′
p + s ′

qs
′′
q )

]
×

[ ∞∑
n=0

1

(n!)2

(
u′ − v′′ (r

′
ps ′

q + r ′
qs

′
p)

(1 − v′v′′)

)n (
u′′ − v′ (r

′′
ps ′′

q + r ′′
q s ′′

p)

(1 − v′v′′)

)n
]

. (33)

This expression gets further simplified if we substitute from (13)

r ′
p = r ′p′ r ′

q = r ′q ′ s ′
q = −s ′q ′ s ′

p = s ′p .
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We therefore get

(G ′, G ′′) = (1 − v′v′′)−2 exp
[
(1 − v′v′′)−1(r ′

pr ′′
p + r ′

qr
′′
q + s ′

ps ′′
p + s ′

qs
′′
q )

]
×

[ ∞∑
n=0

1

(n!)2
(u′)n(u′′ − v′ (r

′′
ps ′′

q + r ′′
q s ′′

p)

(1 − v′v′′)
)n

]
. (34)

One last simplification can be brought about in the above expression when we recognize
that

r ′′
ps ′′

q + r ′′
q s ′′

p + u′′v′′ = rpsq + rqsp + vu

= vu . (35)

This tells us that

r ′′
ps ′′

q + r ′′
q s ′′

p = uv − u′′v′′ . (36)

Substituting this in our expression (34) for the inner product we get

(G ′, G ′′) = (1 − v′v′′)−2 exp
[
(1 − v′v′′)−1(r ′

pr ′′
p + r ′

qr
′′
q + s ′

ps ′′
p + s ′

qs
′′
q )

]
×

[ ∞∑
n=0

1

(n!)2
(u′)n(u′′ − v′ (uv − u′′v′′)

(1 − v′v′′)
)n

]
= (1 − v′v′′)−2 exp

[
(1 − v′v′′)−1(r ′

pr ′′
p + r ′

qr
′′
q + s ′

ps ′′
p + s ′

qs
′′
q )

]
×

[ ∞∑
n=0

1

(n!)2

(
u′ (u

′′ − uvv′)
(1 − v′v′′)

)n
]

. (37)

On the other hand if we use a slightly modified scalar product [12] for theθ part
(only) and use the symbolG(D(A)) for the generating function, whereD(A) is the Wigner
D-matrix for SU(3) in an arbitrary representation, then

G(D(A)) = (1 − v′v′′)−2 exp

[
(r ′

pr ′′
p + r ′

qr
′′
q + s ′

ps ′′
p + s ′

qs
′′
q )

(1 − v′v′′)

+
(

u′ − v′′ (r
′
ps ′

q + r ′
qs

′
p)

(1 − v′v′′)

) (
u′′ − v′ (r

′′
ps ′′

q + r ′′
q s ′′

p)

(1 − v′v′′)

)]
= (1 − v′v′′)−2 exp

[
(r ′

pr ′′
p + r ′

qr
′′
q + s ′

ps ′′
p + s ′

qs
′′
q ) + u′(u′′ − uvv′)

(1 − v′v′′)

]
. (38)

The expression on the right-hand side of (37) or of (38) is our generating function for
the WignerD-matrix elements ofSU(3).

3.1. Symmetries of theD-matrix elements

The form of the generating functionG(D(A)) given in (38) is a convenient starting point for
the discussion of the symmetries of theD-matrix [10]. The symmetries of the WignerD-
matrix play a very important role in the study of the special functions connected withSU(3)

as theD-matrix elements themselves happen to be precisely the special functions ofSU(3).
One usual way to obtain the special functions is as solutions of the appropriate differential
equations. But here we have obtained them by combining their tensorial properties with the
technique of using a generating function. It is needless to say that these symmetries form a
crucial part of the topic of harmonic analysis onSU(3) also. We will pursue these subjects
elsewhere.
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4. Wigner’s D-matrix elements of SU (3) in any irreducible representation

In this section our task is to extract the coefficient of the monomial

pP qQrRsSuUvV × p′P ′
q ′Q′

r ′R′
s ′S ′

u′U ′
v′V ′

in the expansion of the generating function that we have obtained above, equation (37), for
the WignerD-matrix elements ofSU(3). For this purpose we expand the right-hand side
of the above generating function and obtain
∞∑

m=0

(r ′
pr ′′

p + r ′
qr

′′
q + s ′

ps ′′
p + s ′

qs
′′
q )

m!(1 − v′v′′)m

∞∑
n=0

1

(n!)2

(
u′ (u′′ − uvv′)

(1 − v′v′′)(1+2/n)

)n

=
∞∑

m=n=s=0

n,m,m−m1,m−m1−m2∑
t,m1,m2,m3=0

× (s + m + n + 1)!

m!n!(n − t)!t !(m + n + 1)!s!(m − m1 − m2 − m3)!m3!

×(r ′′
p)m1(r ′′

q )m2(s ′′
p)m3(s ′′

q )m−∑
mi (p′)m1+m3(q ′)m−m1−m3(r ′)m1+m2(s ′)m−m1−m2

×(u′)n(v′)n−t+su′nv′n−t+su′′t v′′s(−uv)n−t . (39)

Now let,

m1 + m2 = P ′ m − m1 − m3 = Q′ m1 + m2 = R′

m − m1 − m2 = S ′ n = U ′ n − t + s = V ′ .
(40)

The above assignments imply

m = P ′ + Q′ m2 − m3 = R′ − P ′

m2 = R′ − P ′ + m3 s = t + V ′ − U ′ .
(41)

This gives us

D
(M=R+U, N=S+V )
PQRSUV, P ′Q′R′S ′U ′V ′(A) =

∞∑
P ′+Q′=0

∞∑
U ′=0

∞∑
V ′=U ′

P ′+Q∑
m1=0

U ′∑
t=0

S ′∑
m3=0

P ′+Q′−m1∑
m2=0

× (t + V ′ − U ′)!(−uv)U
′−t

(P ′ + Q′)!U ′!(U ′ − t)!t !(P ′ + Q′ + U ′ + 1)!

× 1

(t + V ′ − U ′)!(R′ − P ′ + m3)!(S ′ − m3)!m3!

×(r ′′
p)m1(r ′′

q )m2(s ′′
p)m3(s ′′

q )S
′−m3u′′t v′′t+V ′−U ′

×(p′)P
′
(q ′)Q

′
(r ′)R

′
(s ′)S

′
(u′)U

′
(v′)V

′
. (42)

In the above we substitute for the following from (32):

r ′′
p , r ′′

q , u′′, s ′′
q , s ′′

p, v′′

and get

D
(M=R+U, N=S+V )
PQRSUV, P ′Q′R′S ′U ′V ′(A) =

∞∑
P ′+Q′=0

∞∑
U ′=0

∞∑
V ′=U ′

P ′+Q∑
m1=0

U ′∑
t=0

S ′∑
m3=0

P ′+Q′−m1∑
m2=0

×
∑

m11+m12+m13=m1

∑
m21+m22+m23=m2

∑
m31+m32+m33=m3

×
∑

m41+m42+m43=S ′−m3

∑
t11+m12+m13=t

∑
t21+t22+t23=t+V ′−U ′
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× (−1)U
′−t (t + V ′ − U ′)!(−uv)U

′−t

(P ′ + Q′)!U ′!(U ′ − t)!t !(P ′ + Q′ + U ′ + 1)!

× 1

(t + V ′ − U ′)!(R′ − P ′ + m3)!(S ′ − m3)!m3!

× m1!m2!m3!(S ′ − m3)!t !(t + V ′ − U ′)!
m11!m12!m13!m21!m22!m23!m31!m32!m33!m41!m42!m43!t11!t12!t13!t21!t22!t23!

×(a11)
m11(a∗

11)
m11(a21)

m12(a∗
21)

m42(a31)
m13(a∗

31)
m43(a12)

m21(a∗
12)

m31(a22)
m22

×(a∗
22)

m32(a32)
m23(a∗

32)
m33(a13)

t11(a∗
13)

t21(a23)
t12(a∗

23)
t22(a33)

t13(a∗
33)

t23

×(p′)P
′
(q ′)Q

′
(r ′)R

′
(s ′)S

′
(u′)U

′
(v′)V

′ × (p)P (q)Q(r)R(s)S(u)U (v)V (43)

where we have made the identifications
m11 + m21 + t11 + m32 + m42 + t22 = P

m12 + m22 + t12 + m41 + m32 + t22 = Q

m11 + m21 + t11 + m12 + m22 + t22 = R

m41 + m31 + t21 + m42 + m32 + t22 = S

m13 + m23 + t13 + U ′ − t = U

m43 + m33 + t23 + U ′ − t = V .

(44)

Finally, we get the desired object, i.e. the WignerD-matrix or the finite transformation
matrix of the groupSU(3) in any irreducible representation by multiplying the above matrix
element by the factor in (28).

So finally,

D
(M=R+U, N=S+V )
PQRSUV, P ′Q′R′S ′U ′V ′(A)=

(
P !Q!R!S!U !V !(2I + 1)

(U+ 2I+ 1)!(V + 2I+ 1)!

(U ′ + 2I ′ + 1)!(V ′ + 2I ′ + 1)!

P ′!Q′!R′!S ′!U ′!V ′!(2I ′ + 1)

)1/2

×
(

P ′!Q′!R′!S ′!U ′!V ′!(P ′ + Q′ + 1)

(V ′ + P ′ + Q′ + 1)!

)
×

∞∑
P ′+Q′=0

∞∑
U ′=0

∞∑
V ′=U ′

P ′+Q∑
m1=0

U ′∑
t=0

S ′∑
m3=0

P ′+Q′−m1∑
m2=0

∑
m11+m12+m13=m1

∑
m21+m22+m23=m2

×
∑

m31+m32+m33=m3

∑
m41+m42+m43=S ′−m3

∑
t11+m12+m13=t

∑
t21+t22+t23=t+V ′−U ′

× (−1)U
′−t (t + V ′ − U ′)!(−uv)U

′−t

(P ′ + Q′)!U ′!(U ′ − t)!t !(P ′ + Q′ + U ′ + 1)!

× 1

(t + V ′ − U ′)!(R′ − P ′ + m3)!(S ′ − m3)!m3!

× m1!m2!m3!(S ′ − m3)!t !(t + V ′ − U ′)!
m11!m12!m13!m21!m22!m23!m31!m32!m33!m41!m42!m43!

× 1

t11!t12!t13!t21!t22!t23!
×(a11)

m11(a∗
11)

m11(a21)
m12(a∗

21)
m42(a31)

m13(a∗
31)

m43(a12)
m21(a∗

12)
m31(a22)

m22

×(a∗
22)

m32(a32)
m23(a∗

32)
m33(a13)

t11(a∗
13)

t21(a23)
t12(a∗

23)
t22 (a33)

t13(a∗
33)

t23
)

. (45)

The above equation, equation (45) for the WignerD-matrix element forSU(3) is the
analogue of Wigner’sD-matrix element forSU(2) (see, for example, [9, 10]). One can try
to reduce the number of summations in the above formula for theD-matrix elements but
we will not attempt it here.
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4.1. Parametrization usingEZ and EW
Our expression, equation (45), is independent of any particular parametrization of the
elements of the matrixA ∈ SU(3). We now give a parametrization [3] ofA ∈ SU(3)

in terms of the complex variablesz,z2, z3 and w1, w2, w3 corresponding to the IRs 3and
3∗.

For this purpose we constrain these variables to the intersection of the two unit 5-spheres

|z1|2 + |z2|2 + |z3|2 = 1

|w1|2 + |w2|2 + |w3|2 = 1
(46)

the complex unit cone

z1w1 + z2w2 + z3w3 = 0 . (47)

ThenA ∈ SU(3) can be written as below

A =
( z∗

1 z∗
2 z∗

3
w1 w2 w3

u1 u2 u3

)
(48)

where

ui =
∑
j,k

εijkzjw
∗
k . (49)

The following two points are to be noted. (i) This unit cone is a homogeneous space
[3] for the action of the groupSU(3) and (ii) the group manifold itself can be identified
with this cone. This is contrary to the popular belief that only in the case ofSU(2) can the
group manifold be identified with a geometric surface. Moreover, as can be seen from the
section on the review of our earlier results this cone serves as a model space for the IRs of
SU(3).

5. Discussion

In this paper, making use of the tools of a calculus that we had set up previously to do
computations onSU(3), we have obtained (i) a generating function (equations (37) and (38))
for the WignerD-matrix elements ofSU(3) and (ii) a closed-form algebraic expression
(equation (45)) for the individual WignerD-matrix elements ofSU(3) in any irreducible
representation. To our knowledge this is the first time that such a generating function has
been written forSU(3). See also Hage Hassan [7] and references therein. But this generating
function gives us unitary matrix elements ofSU(3) only up to a multiplicative factor. The
reason for this is that our auxiliary measure for the basis states is not a group-invariant
measure. This is clearly a drawback. However, for computing objects such as the group
characters this is no hurdle since the characters are invariant under basis transformations. In
fact, one can write a generating function for the characters ofSU(3) and from that one can
derive the Weyl’s character formula [12]. Since it is possible to generalize our results (see
the overview) to higher groups it should also be possible to obtain the WignerD-matrix
elements for the higher groups using methods similar to the one described in this paper.

We also note that our generating function is in fact a product of two factors, one of
which is an exponential function and the second is a power series. This seems to be a
consequence of the particular choice of variables occurring in the construction of our basis
functions and also because of the particular scalar product that was used by us. As a result
the θ variable part of the formula for theD-matrix elements decouples from the part that
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depends on other variables. By using a slightly different scalar product for theθ part of
the basis functions one can obtain the generating function for theD-matrix elements as a
single exponential function alone (see equation (38)). But there is no guarantee that such
a scalar product will also yield an equally elegant formulae for other objects such as, for
example, for Clebsch–Gordan coefficients for which the first scalar product itself yields
a single exponential as a generating function [1]. Next, the expression for the individual
D-matrix elements forSU(3) has been obtained by many people previously [4–6]. But one
desirable feature about our expression is that it is quite compact and is independent of any
particular parametrization used for describing the defining representation ofSU(3).

Now, a word regarding the generating function technique and its possible usage to
compute some physical quantities. Stated briefly, the technique involves writing a generating
function for all objects of interest (such as all theD-matrix elements in all IRs) and then
extracting the object of interest for the current physical problem (such as theD-matrix
element in a particular IR) as a coefficient of the appropriate monomial in the power-series
expansion of the generating function in terms of these monomials. Therefore it may be
useful to try to apply this technique to write a generating function for a partition function
involving SU(3) IRs, for example, for partition functions occurring in QGP [13]. Then
one can try to extract that part of the partition function which corresponds to the physically
interesting case such as, for example, the partition function corresponding to theSU(3)

scalar representation etc, by the above-mentioned technique. The usual way of extracting
such terms is by making use of the orthogonality properties of characters ofSU(3) but the
resultant class integrals cannot be solved exactly so one has to resort to some approximations.
The generating function method can obviate the necessity of such steps and the resultant
approximations. This application is presently under investigation and will be the subject of
a future publication.
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Appendix A. Examples

To compute the matrix elements ofSU(3), for lower dimensions, it is easier to work with
the generating function for the matrix elements (equations (37) and (38)).

For the irreducible representation 3the only terms of the generating function which
are relevant are the ones linear in the primed and and doubly primed composite variables
r ′
p, r ′′

p , . . . . This gives us the following expansion for the generating function:

r ′
pr ′′

p + r ′
qr

′′
q + s ′

ps ′′
p + s ′

qs
′′
q + u′u′′ + v′v′′ . (A1)

We now substitute for the doubly primed variables, in the above expression,
from equations (32) and (17), and extract the coefficients of the various monomials
pP qQrRsSuUvV for the values of the quantum numbersP, Q, R, S, U, V given in the
table below for the IR 3. This gives us theSU(3) representative matrix (equation (1)).
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Table A1. 3(M = 1, N = 0).

P Q R S U V I I3 Y |PQRST UV ) N1/2

u 1 0 1 0 0 0 1
2

1
2

1
3 z1

√
2

d 0 1 1 0 0 0 1
2 − 1

2
1
3 z2

√
2

s 0 0 0 0 1 0 0 0 − 2
3 z3

√
2

Table A2. 3(M = 1, N = 0).

u d s

u a11 a12 a13

d a21 a22 a23

s a31 a32 a33

A similar treatment for the IR 3∗, using the corresponding table, given below, gives us
the SU(3) matrix A†.

Table A3. 3∗(M = 0, N = 1).

P Q R S U V I I3 Y |PQRST UV ) N1/2

d̄ 1 0 0 1 0 0 1
2

1
2 − 1

3 w2
√

2

ū 0 1 0 0 0 0 1
2 − 1

2 − 1
3 −w1

√
2

s̄ 0 0 0 0 0 1 0 0 2
3 w3

√
2

Table A4. 3∗(M = 0, N = 1).

d̄ ū s̄

d̄ a∗
11 a∗

21 a∗
31

ū a∗
12 a∗

22 a∗
32

s̄ a∗
13 a∗

23 a∗
33

We now treat the case of the IR 8. The terms relevant for this IR are quadratic in the
primed and doubly primed composite variables. For example the first term in the expansion
of the generating function (38) is

r ′
pr ′′

ps ′
ps ′′

p = p′2r ′s ′ (−A11A
∗
11pqrs + A11A

∗
12A

∗
12p

2rs + A11A
∗
13prv − A21A

∗
12q

2rs

+A21A
∗
12pqrs + A21A

∗
13qrv + A31A

∗
11qsu + A31A

∗
12psu + A31A

∗
13uv

)
.

(A2)

In equation (A2) the various monomialspP qQrRsSuUvV correspond to the quantum
numbersP, Q, R, S, U, V in the first row of the table corresponding to the IR 8as indicated
in the table given below. Therefore their coefficients give us the first row of theSU(3)

WignerD-matrix for the IR 8. One can build the remaining rows in a similar manner. The
result is given in the form of a table below.
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Table A5. 8(M = 1, N = 1).

P Q R S U V I I3 Y |PQRST UV ) N1/2

π+ 2 0 1 1 0 0 1 1 0 z1w2
√

6
π0 1 1 1 1 0 0 1 0 0 −z1w1 + z2w2

√
12

π− 0 2 1 1 0 0 1 −1 0 −z2w1
√

6
K+ 1 0 1 0 0 1 1

2
1
2 1 z1w3

√
6

K0 0 1 1 0 0 1 1
2 − 1

2 1 z2w3
√

6

K̄0 1 0 0 1 1 0 1
2

1
2 −1 w2z3

√
6

K− 0 1 0 1 1 0 1
2 − 1

2 −1 −w1z3
√

6
η 0 0 0 0 1 1 0 0 0 (z3w3 = −z1w1 − z2w2) 2

Table A6. 8∗(M = 1, N = 1).

π+ π0 π− K+ K0 K̄0 K− η

π+ π0 π− K+ K0 K̄0 K− η

π+ (a21a
∗
12 − a11a

∗
11)

a11a
∗
12√

2
a11a

∗
13

−√
2a21a

∗
12

3

√
2a21a

∗
13

3 −√
2a31a

∗
11

√
2a31a

∗
12

a31a
∗
13√

3

π0 (a21a
∗
21−a11a

∗
11)√

2

a11a
∗
21

2
a11a

∗
31√

2
− a21a

∗
11

6
√

2

a21a
∗
31

6
√

2
− a31a

∗
11√

2

a31a
∗
21√

2

a31a
∗
31

2
√

3

π− (a22a
∗
21 − a12a

∗
11)

a12a
∗
21√

2
a12a

∗
31 −

√
2a22a

∗
11

3

√
2a22a

∗
31

3 −√
2a32a

∗
11

√
2a32a

∗
21

a32a
∗
31√

3

K+ (a21a
∗
23 − a11a

∗
13)

a11a
∗
23√

2

a11a
∗
33√

2
− a21a

∗
13

3
a21a

∗
33

3 −a31a
∗
13 a31a

∗
23

a31a
∗
33√

6

K0 (a21a
∗
23 − a12a

∗
13)

a12a
∗
23√

2
a12a

∗
33 − a21a

∗
13

3
a21a

∗
33

3 −a31a
∗
13 a31a

∗
23

a31a
∗
33√

6

K̄0 (a23a
∗
22 − a13a

∗
12)

a13a
∗
22√

2
a13a

∗
32 − a23a

∗
12

3
a23a

∗
32

3 −a33a
∗
12 a33a

∗
22

a33a
∗
32√

6

K− (a23a
∗
21 − a13a

∗
11)

a13a
∗
21√

2
a13a

∗
31 − a23a

∗
11

3
a23a

∗
31

3 −a33a
∗
11 a33a

∗
21

a33a
∗
31√

6

η

√
3(a23a

∗
23−a13a

∗
13)√

2

√
3a13a

∗
23

2

√
3a13a

∗
33√

2
− a23a

∗
13√

6

a23a
∗
33√

6
−

√
3a33a

∗
13√

2

√
3a33a

∗
23√

2

a33a
∗
33

2

In all the above computations a normalization factor for eachD-matrix element is
computed with the help of (28).
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